Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods.
نویسندگان
چکیده
A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5-12.5 Hz) and beta (12.5-19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5-7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.
منابع مشابه
Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملAutomated ocular artifact removal: comparing regression and component-based methods
Objective: The aim is to compare various fully automated methods for reducing ocular artifacts from EEG recordings. Methods: Seven automated methods including regression, six component-based methods for reducing ocular artifacts have been applied to 36 data sets from two different labs. The influence of various noise sources is analyzed and the ratio between corrected and uncorrected EEG spectr...
متن کاملHybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts ca...
متن کاملHybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal
Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independ...
متن کاملJournal: Clin
Objective: The aim is to compare various fully automated methods for reducing ocular artifacts from EEG recordings. Methods: Seven automated methods including regression, six component-based methods for reducing ocular artifacts have been applied to 36 data sets from two different labs. The influence of various noise sources is analyzed and the ratio between corrected and uncorrected EEG spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of psychophysiology : official journal of the International Organization of Psychophysiology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2004